Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
Environ Toxicol Chem ; 41(10): 2613-2621, 2022 10.
Artículo en Inglés | MEDLINE | ID: covidwho-2027344

RESUMEN

Increased disinfection efforts in various parts of China, including Hong Kong, to prevent the spread of the novel coronavirus may lead to elevated concentrations of disinfectants in domestic sewage and surface runoff in Hong Kong, generating large quantities of toxic disinfection byproducts. Our study investigated the presence and distribution of four trihalomethanes (THMs), six haloacetic acids (HAAs), and eight nitrosamines (NAMs) in rivers and seawater in Hong Kong. The concentrations of THMs (mean concentration: 1.6 µg/L [seawater], 3.0 µg/L [river water]), HAAs (mean concentration: 1.4 µg/L [seawater], 1.9 µg/L [river water]), and NAMs (mean concentration: 4.4 ng/L [seawater], 5.6 ng/L [river water]) did not significantly differ between river water and seawater. The total disinfection byproduct content in river water in Hong Kong was similar to that in Wuhan and Beijing (People's Republic of China), and the total THM concentration in seawater was significantly higher than that before the COVID-19 pandemic. Among the regulated disinfection byproducts, none of the surface water samples exceeded the maximum index values for THM4 (80 µg/L), HAA5 (60 µg/L), and nitrosodimethylamine (100 ng/L) in drinking water. Among the disinfection byproducts detected, bromoform in rivers and seawater poses the highest risk to aquatic organisms, which warrants attention and mitigation efforts. Environ Toxicol Chem 2022;41:2613-2621. © 2022 SETAC.


Asunto(s)
COVID-19 , Desinfectantes , Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Dimetilnitrosamina , Desinfectantes/análisis , Desinfección , Halogenación , Hong Kong , Humanos , Pandemias , Proyectos Piloto , Aguas del Alcantarillado , Trihalometanos/análisis , Contaminantes Químicos del Agua/análisis
2.
Environ Sci Technol ; 55(7): 4103-4114, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: covidwho-1392753

RESUMEN

Intensified efforts to curb transmission of the Severe Acute Respiratory Syndrome Coronavirus-2 might lead to an elevated concentration of disinfectants in domestic wastewater and drinking water in China, possibly resulting in the generation of numerous toxic disinfection byproducts (DBPs). In this study, the occurrence and distribution of five categories of DBPs, including six trihalomethanes (THMs), nine haloacetic acids (HAAs), two haloketones, nine nitrosamines, and nine aromatic halogenated DBPs, in domestic wastewater effluent, tap water, and surface water were investigated. The results showed that the total concentration level of measured DBPs in wastewater effluents (78.3 µg/L) was higher than that in tap water (56.0 µg/L, p = 0.05), followed by surface water (8.0 µg/L, p < 0.01). Moreover, HAAs and THMs were the two most dominant categories of DBPs in wastewater effluents, tap water, and surface water, accounting for >90%, respectively. Out of the regulated DBPs, none of the wastewater effluents and tap water samples exceeded the corresponding maximum guideline values of chloroform (300 µg/L), THM4 (80 µg/L), NDMA (100 ng/L), and only 2 of 35 tap water samples (67.6 and 63.3 µg/L) exceeded the HAA5 (60 µg/L) safe limit. HAAs in wastewater effluents showed higher values of risk quotient for green algae. This study illustrates that the elevated use of disinfectants within the guidance ranges during water disinfection did not result in a significant increase in the concentration of DBPs.


Asunto(s)
COVID-19 , Desinfectantes , Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , China , Desinfectantes/análisis , Desinfección , Agua Potable/análisis , Humanos , Pandemias , SARS-CoV-2 , Trihalometanos/análisis , Aguas Residuales , Agua , Contaminantes Químicos del Agua/análisis
3.
Water Res ; 198: 117138, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1174530

RESUMEN

Intensified sanitization practices during the recent coronavirus disease-2019 (COVID-19) led to the release of chlorine-based disinfectants in surface water, potentially triggering the formation of disinfection byproducts (DBPs) in the presence of dissolved organic nitrogen (DON). Thus, a comprehensive investigation of DON's spatial distribution and its association with DBP occurrence in the surface water is urgently needed. In this study, a total of 51 water samples were collected from two rivers and four lakes in May 2020 in Wuhan to explore the regional variation of nitrogen (N) species, DON's compositional characteristics, and the three classes of DBP occurrence. In lakes, 53.0% to 86.3% of N existed as DON, with its concentration varying between 0.3-4.0 mg N/L. In contrast, NO3--N was the dominant N species in rivers. Spectral analysis revealed that DON in the lakes contained higher humic and fulvic materials with higher A254, A253/A203, SUVA254, and PIII+IV/PI+II+V ratios, while rivers had higher levels of hydrophilic compounds. Trihalomethanes (THMs) were the most prevalent DBPs in the surface waters, followed by N-nitrosamines and haloacetonitriles (HANs). The levels of N-nitrosamines (23.1-97.4 ng/L) increased significantly after the outbreak of the COVID-19 pandemic. Excessive DON in the surface waters was responsible for the formation of N-nitrosamines. This study confirmed that the presence of DON in surface water could result in DBP formation, especially N-nitrosamines, when disinfectants were discharged into surface water during the COVID-19 pandemic.


Asunto(s)
COVID-19 , Desinfectantes , Contaminantes Químicos del Agua , Purificación del Agua , Desinfección , Halogenación , Humanos , Nitrógeno/análisis , Pandemias , SARS-CoV-2 , Trihalometanos/análisis , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA